
Extensions to the Csound Language: from User-Defined to
Plugin Opcodes and Beyond.

Victor Lazzarini

Music Technology Laboratory
National University of Ireland, Maynooth

Victor.Lazzarini@nuim.ie

Abstract

This article describes the latest methods of
extending the csound language. It discusses these
methods in relation to the two currently available
versions of the system, 4.23 and 5. After an
introduction on basic aspects of the system, it
explores the methods of extending it using
facilities provided by the csound language itself,
using user-defined opcodes. The mechanism of
plugin opcodes and function table generation is
then introduced as an external means of extending
csound. Complementing this article, the fsig signal
framework is discussed, focusing on its support for
the development of spectral-processing opcodes.

Keywords: Computer Music, Music Processing
Languages, Application Development, C / C++
Programming

1 Introduction

The csound (Vercoe 2004) music programming
language is probably the most popular of the text-
based audio processing systems. Together with
cmusic (Moore 1990), it was one of the first
modern C-language-based portable sound
compilers (Pope 1993), but unlike it, it was
adopted by composers and developers world-wide
and it continued to develop into a formidable tool
for sound synthesis, processing and computer
music composition. This was probably due to the
work of John Ffitch and others, who coordinated a
large developer community who was ultimately
responsible for the constant upgrading of the
system. In addition, the work of composers and
educators, such as Richard Boulanger, Dave
Phillips and many others, supported the expansion
of its user base, who also has been instrumental in
pushing for new additions and improvements. In
summary, csound can be seen as one of the best
examples of music open-source software
development, whose adoption has transcended a

pool of expert-users, filtering into a wider music
community.

The constant development of csound has been
partly fuelled by the existence of a simple opcode
API (fftich 2000) (Resibois 2000), which is easy to
understand, providing a good, if basic, support for
unit generator addition. This was, for many years,
the only direct means of extending csound for
those who were not prepared to learn the inside
details of the code. In addition, the only way of
adding new unit generators to csound was to
include them in the system source code and re-
build the system, as there was no support for
dynamically-loadable components (csound being
from an age where these concepts had not entered
mainstream software development). Since then,
there were some important new developments in
the language and the software in general providing
extra support for extensions. These include the
possibility of language extension both in terms of
C/C++-language loadable modules and in csound’s
own programming language. Another important
development has been the availability of a more
complete C API (Goggins et al 2004), which can
be used to instantiate and control csound from a
calling process, opening the door for the separation
of language and processing engine.

2 Csound versions

Currently there are two parallel versions of the so-
called canonical csound distribution, csound 4.23,
which is a code-freeze version from 2002 , and
csound 5, a re-modelled system, still in beta stage
of development. The developments mentioned in
the introduction are present in csound 4.23, but
have been further expanded in version 5. In this
system, apart from the core opcodes, most of the
unit generators are now in loadable library
modules and further opcode addition should be in
that format. The plugin opcode mechanism is
already present in version 4.23, although some
differences exist between opcode formats for the

mailto:Victor.Lazzarini@nuim.ie

two versions. These are mainly to do with
arguments to functions and return types. There is
also now a mechanism for dynamic-library
function tables and an improved/expanded csound
API. Other changes brought about in csound 5 are
the move to the use of external libraries for
soundfile, audio IO and MIDI.

Csound 4.23 is the stable version of csound, so at
this moment, it would be the recommended one for
general use and, especially, for new users. Most of
the mechanisms of language extension and unit
generator development discussed in this paper are
supported by this version. For Linux users, a GNU
building system-based source package is available
for this version, making it simple to configure and
install the program on most distributions. It is
important to also note that csound 5 is fully
operational, although with a number of issues still
to be resolved. It indeed can be used by anyone,
nevertheless we would recommend it for more
experienced users. However, the user input is
crucial to csound 5 development, so the more users
adopting the new version, the better for its future.

3 Extending the language

As mentioned earlier, csound has mechanisms for
addition of new components both by writing code
in the csound language itself and by writing C/C++
language modules. This section will concentrate on
csound language-based development, which takes
the basic form of user-defined opcodes. Before
examining these, a quick discussion of csound data
types, signals and performance characteristics is
offered

3.1 Data types and signals

The csound language provides three basic data
types: i-, k- and a-types. The first is used for
initialisation variables, which will assume only one
value in performance, so once set, they will usually
remain constant throughout the instrument code.
The other types are used to hold scalar (k-type) and
vectorial (a-type) variables. The first will hold a
single value, whereas the second will hold an array
of values (a vector) and internally, each value is a
floating-point number, either 32- or 64-bit,
depending on the version used.

A csound instrument code can use any of these
variables, but opcodes might accept specific types
as input and will generate data in one of those
types. This implies that opcodes will execute at a
certain update rate, depending on the output type
(Ekman 2000). This can be at the audio sampling
rate (sr), the control rate (kr) or only at
initialisation time. Another important aspect is that

csound instrument code effectively has a hidden
processing loop, running at the control-rate and
affecting (updating) only control and audio signals.
An instrument will execute its code lines in that
loop until it is switched off
Under this loop, audio variables, holding a block of
samples equivalent to sr/kr (ksmps), will have their
whole vector updated every pass of the loop:

instr 1 /* start of the loop */

iscl = 0.5 /* i-type, not affected by

 the loop */
asig in /* copies ksmps samples from
 input buffer into asig */
atten = asig*iscl /* scales every sample
 of asig with iscl */
out atten /* copies kmsps samples from
 atten into output buffer */

endin /* end of the loop */

This means that code that requires sample-by-
sample processing, such as delays that are smaller
than one control-period, will require setting the a-
rate vector size, ksmps, to 1, making kr=sr. This
will have a detrimental effect on performance, as
the efficiency of csound depends a lot on the use of
different control and audio rates.

3.2 User-defined opcodes

The basic method of adding unit generators in the
csound language is provided by the user-defined
opcode (UDO) facility, added by Istvan Varga to
csound 4.22. The definition for a UDO is given
using the keywords opcode and endop, in a similar
fashion to instruments:

opcode NewUgen,a,aki
/* defines an a-rate opcode, taking a,
 k and i-type inputs */
endop

The number of allowed input argument types is
close to what is allowed for C-language opcodes.
All p-field values are copied from the calling
instrument. In addition to a-,k- and i-type
arguments (and 0, meaning no inputs), which are
audio, control and initialisation variables, we have:
K, control-rate argument (with initialisation); plus
o, p and j (optional arguments, i-type variables
defaulting to 0,1 and -1). Output is permitted to be
to any of a-, k- or i-type variables. Access to input
and output is simplified through the use of a
special pair of opcodes, xin and xout. UDOs
will have one extra argument in addition to those
defined in the declaration, the internal number of
the a-signal vector samples iksmps. This sets
the value of a local control rate (sr/iksmps) and

defaults to 0, in which case the iksmps value is
taken from the caller instrument or opcode.

The possibility of a different a-signal vector size
(and different control rates) is an important aspect
of UDOs. This enables users to write code that
requires the control rate to be the same as audio
rate, without actually having to alter the global
values for these parameters, thus improving
efficiency. An opcode is also provided for setting
the iksmps value to any given constant:

setksmps 1 /* sets a-signal vector to 1,
 making kr=sr */

The only caveat is that when the local ksmps value
differs from the global setting, UDOs are not
allowed to use global a-rate operations (global
variable access, etc.). The example below
implements a simple feedforward filter, as an
example of UDO use:

#define LowPass 0
#define HighPass 1

opcode NewFilter a,aki

 setksmps 1 /* kr = sr */
 asig,kcoef,itype xin
 adel init 0

 if itype == HighPass then
 kcoef = -kcoef
 endif

 afil = asig + kcoef*adel
 adel = asig /* 1-sample delay,

only because kr = sr */
 xout afil

endop

Another very important aspect of UDOs is that
recursion is possible and only limited to available
memory. This allows, for instance, the
implementation of recursive filterbanks, both serial
or parallel, and similar operations that involve the
spawning of unit generators. The UDO facility has
added great flexibility to the csound language,
enabling the fast development of musical signal
processing operations. In fact, an on-line UDO
database has been made available by Steven Yin,
holding many interesting new operations and
utilities implemented using this facility
(www.csounds.com/udo). This possibly will form
the foundation for a complete csound-language-
based opcode library.

3.3 Adding external components

Csound can be extended in variety of ways by
modifying its source code and/or adding elements

to it. This is something that might require more
than a passing acquaintance with its workings, as a
rebuild of the software from its complete source
code. However, the addition of unit generators and
function tables is generally the most common type
of extension to the system. So, to facilitate this,
csound offers a simple opcode development API,
from which new dynamically-loadable (‘plugin’)
unit generators can be built. In addition, csound 5
also offers a similar mechanism for function tables.
Opcodes can be written in the C or C++ language.
In the latter, the opcode is written as a class
derived from a template (‘pseudo-virtual’) base
class OpcodeBase, whereas in the former, we
normally supply a C module according to a basic
description. The following sections will describe
the process of adding an opcode in the C language.
An alternative C++ class implementation would
employ a similar method.

3.3.1 Plugin opcodes
C-language opcodes normally obey a few basic
rules and their development require very little in
terms of knowledge of the actual processes
involved in csound. Plugin opcodes will have to
provide three main programming components: a
data structure to hold the opcode internal data, an
initialising function or method, and a processing
function or method. From an object-oriented
perspective, all we need is a simple class, with its
members, constructor and perform methods. Once
these elements are supplied, all we need to do is to
add a line telling csound what type of opcode it is,
whether it is an i-, k- or a-rate based unit generator
and what arguments it takes.

The data structure will be organised in the
following fashion:

1. The OPDS data structure, holding the
common components of all opcodes.

2. The output pointers (one MYFLT pointer
for each output)

3. The input pointers (as above)
4. Any other internal dataspace member.

The csound opcode API is defined by csdl.h, which
should be included at the top of the source file. The
example below shows the data structure for same
filter implemented in previous sections:

#include "csdl.h"

typedef struct _newflt {
OPDS h;
MYFLT *outsig;/* output pointer */
MYFLT *insig,*kcoef,*itype;/* input
 pointers */
MYFLT delay; /* internal variable,

http://www.csounds.com/udo

 the 1-sample delay */
int mode; /* filter mode */
} newfilter;

The initialisation function is only there to initialise
any data, such as the 1-sample delay, or allocate
memory, if needed. The new plugin opcode model
in csound5 expects both the initialisation function
and the perform function to return an int value,
either OK or NOTOK. In addition, both methods
now take a two arguments: pointers to the
CSOUND data structure and the opcode dataspace.
In version 4.23 the opcode function will only take
the pointer to the opcode dataspace as argument.
The following example shows an initialisation
function in csound 5 (all following examples are
also targeted at that version):

int newfilter_init(CSOUND *csound,

newfilter *p){
p->delay = (MYFLT) 0;
p->mode = (int) *p->itype;
return OK;
}

The processing function implementation will
depend on the type of opcode that is being created.
For audio rate opcodes, because it will be
generating audio signal vectors, it will require an
internal loop to process the vector samples. This is
not necessary with k-rate opcodes, as we are
dealing with scalar inputs and outputs, so the
function has to process only one sample at a time.
This means that, effectively, all processing
functions are called every control period. The filter
opcode is an audio-rate unit generator, so it will
include the internal loop.

int newfilter_process(CSOUND *csound,
 newfilter *p){
int i;
/* signals in, out */
MYFLT *in = p->insig;
MYFLT *out = p->outsig;
/* control input */
MYFLT coef = *p->kcoef;
/* 1-sample delay */
MYFLT delay = *p->delay;
MYFLT temp;
int ksmps = csound->GetKsmps();

if(p->mode)coef = -coef;

/* processing loop */
for(i=0; i < ksmps; i++){
 temp = in[i];
 out[i] = in[i] + delay*coef ;
 delay = temp;
}
/* keep delayed sample for next time */
*p->delay = delay;

return OK;
}

To complete the source code, we fill an opcode
registration structure OENTRY array called
localops (static), followed by the LINKAGE
macro:

static OENTRY localops[] = {
{ "newfilter", S(newfilter), 5, "a",
"aki", (SUBR)newfilter_init, NULL,
(SUBR)newfilter_process }
};

LINKAGE

The OENTRY structure defines the details of the
new opcode:

1. the opcode name (a string without any
spaces).

2. the size of the opcode dataspace, set using
the macro S(struct_name), in most cases;
otherwise this is a code indicating that the
opcode will have more than one
implementation, depending on the type of
input arguments.

3. An int code defining when the opcode is
active: 1 is for i-time, 2 is for k-rate and 4
is for a-rate. The actual value is a
combination of one or more of those. The
value of 5 means active at i-time (1) and a-
rate (4). This means that the opcode has an
init function and an a-rate processing
function.

4. String definition the output type(s): a, k, s
(either a or k), i, m (multiple output
arguments), w or f (spectral signals).

5. Same as above, for input types: a, k, s, i,
w, f, o (optional i-rate, default to 0), p (opt,
default to 1), q (opt, 10), v(opt, 0.5), j(opt,
–1), h(opt, 127), y (multiple inputs, a-
type), z (multiple inputs, k-type), Z
(multiple inputs, alternating k- and a-
types), m (multiple inputs, i-type), M
(multiple inputs, any type) and n (multiple
inputs, odd number of inputs, i-type).

6. I-time function (init), cast to (SUBR).
7. K-rate function.
8. A-rate function.

The LINKAGE macro defines some functions
needed for the dynamic loading of the opcode.
This macro is present in version 5 csdl.h, but not in
4.23 (in which case the functions need to be added
manually):

#define LINKAGE long opcode_size(void) \
{ return sizeof(localops);} \
OENTRY *opcode_init(ENVIRON *xx) \
{ return localops;} \

The plugin opcode is build as a dynamic module,
and similar code can be used both with csound
versions 4.23 or 5:

gcc -02 -c opsrc.c -o opcode.o
ld -E --shared opcode.o –o opcode.so

However, due to differences in the interface, the
binaries are not compatible, so they will need to
built specificially for one of the two
versions.Another difference is that csound 5 will
load automatically all opcodes in the directory set
with the environment variable OPCODEDIR,
whereas version 4.23 needs the flag –opcode-
lib=myopcode.so for loading a specific module.

3.3.2 Plugin function tables
A new type of dynamic module, which has been
introduced in csound 5 is the dynamic function
table generator (GEN). Similarly to opcodes,
function table GENs were previously only included
statically with the rest of the source code. It is
possible now to provide them as dynamic loadable
modules. This is a very recent feature, introduced
by John Ffitch at the end of 2004, so it has not
been extensively tested. The principle is similar to
plugin opcodes, but the implementation is simpler.
It is only necessary to provide the GEN routine
that the function table implements. The example
below shows the test function table, written by
John Ffitch, implementing a hyperbolic tangent
table:

#include "csdl.h"
#include <math.h>

void tanhtable(CSOUND *csound,

FUNC *ftp, FGDATA *ff,)
{
/* the function table */
MYFLT fp = ftp->ftable;
/* f-statement p5, the range */
MYFLT range = ff->e.p[5];
/* step is range/tablesize */
double step = (double)
 range/(ff->e.p[3]);
int i;
double x;
 /* table-filling loop */
 for(i=0, x=FL(0.0); i<ff->e.p[3];

i++,x+=step)
 *fp++ = (MYFLT)tanh(x);
}

The GEN function takes three arguments, the
csound dataspace, a function table pointer and a
gen info data pointer. The former holds the actual
table, an array of MYFLTs, whereas the latter
holds all the information regarding the table, e.g.
its size and creation arguments. The FGDATA
member e will hold a numeric array (p) with all

p-field data passed from the score f-statement (or
ftgen opcode).

static NGFENS localfgens[] = {
 { "tanh", (void(*)(void))tanhtable},
 { NULL, NULL}
};

The structure NFGENS holds details on the
function table GENs, in the same way as OENTRY
holds opcode information. It contains a string name
and a pointer to the GEN function. The localfgens
array is initialised with these details and terminated
with NULL data. Dynamic GENs are numbered
according to their loading order, starting from
GEN 44 (there are 43 ‘internal’ GENs in csound
5).

#define S sizeof
static OENTRY *localops = NULL;
FLINKAGE

Since opcodes and function table GENs reside in
the same directory and are loaded at the same time,
setting the *localops array to NULL, will avoid
confusion as to what is being loaded. The
FLINKAGE macro works in the same fashion as
LINKAGE.

4 Spectral signals

As discussed above, Csound provides data types
for control and audio, which are all time-domain
signals. For spectral domain processing, there are
two separate signal types, ‘wsig’ and ‘fsig’. The
former is a signal type introduced by Barry Vercoe
to hold a special, non-standard, type of logarithmic
frequency analysis data and is used with a few
opcodes originally provided for manipulating this
data type. The latter is a self-describing data type
designed by Richard Dobson to provide a
framework for spectral processing, in what is
called streaming phase vocoder processes (to
differentiate it from the original csound phase
vocoder opcodes). Opcodes for converting between
time-domain audio signals and fsigs, as well as a
few processing opcodes, were provided as part of
the original framework by Dobson. In addition,
support for a self-describing, portable, spectral file
format PVOCEX (Dobson 2002) has been added to
csound, into the analysis utility program pvanal
and with a file reader opcode. A library of
processing opcodes, plus a spectral GEN, has been
added to csound by this author. This section will
explore the fsig framework, in relation to opcode
development.

Fsig is a self-describing csound data type which
will hold frames of DFT-based spectral analysis

data. Each frame will contain the positive side of
the spectrum, from 0 Hz to the Nyquist (inclusive).
The framework was designed to support different
spectral formats, but at the moment, only an
amplitude-frequency format is supported, which
will hold pairs of floating-point numbers with the
amplitude and frequency (in Hz) data for each DFT
analysis channel (bin). This is probably the most
musically meaningful of the DFT-based output
formats and is generated by Phase Vocoder (PV)
analysis. The fsig data type is defined by the
following C structure:

typedef struct pvsdat {
/* framesize-2, DFT length */
long N;
/* number of frame overlaps */
long overlap;
/* window size */
long winsize;
/* window type: hamming/hanning */
int wintype;
/* format: cur. fixed to AMP:FREQ */
long format;
/* frame counter */
unsigned long framecount;
/* spectral sample is a 32-bit float */
AUXCH frame;
} PVSDAT;

The structure holds all the necessary data to
describe the signal type: the DFT size (N), which
will determine the number of analysis channels
(N/2 + 1) and the framesize; the number of
overlaps, or decimation, which will determine
analysis hopsize (N/overlaps); the size of the
analysis window, generally the same as N; the
window type, currently supporting
PVS_WIN_HAMMING or PVS_WIN_HANN;
the data format, currently only PVS_AMP_FREQ;
a frame counter, for keeping track of processed
frames; and finally the AUXCH structure which
will hold the actual array of floats with the spectral
data. The AUXCH structure and associated
functions are provided by csound as a mechanism
for dynamic memory allocation and are used
whenever such operation is required. A number of
other utility functions are provided by the csound
opcode API, as CSOUND structure members, (in
csoundCore.h), for operations such as loading,
reading and writing files, accessing function tables,
handling string arguments, etc.. Two of these are
used in the code below to provide simple error
notification and handling (InitError() and
PerfError()).

A number of implementation differences exist
between spectral and time-domain processing
opcodes. The main one is that new output is only
produced if a new input frame is ready to be

processed. Because of this implementation detail,
the processing function of a streaming PV opcode
is actually registered as a k-rate routine. In
addition, opcodes allocate space for their fsig
frame outputs, unlike ordinary opcodes, which
simply take floating-point buffers as input and
output. The fsig dataspace is externally allocated,
in similar fashion to audio-rate vectors and control-
rate scalars; however the DFT frame allocation is
done by the opcode generating the signal. With
that in mind, and observing that type of data we are
processing is frequency-domain, we can implement
a spectral unit generator as an ordinary (k-rate)
opcode. The following example is a frequency-
domain version of the simple filter implemented in
the previous sections:

#include "csdl.h"
#include "pstream.h" /* fsig definitions
*/

typedef struct _pvsnewfilter {
OPDS h;
/* output fsig, its frame needs to be
 allocated */
PVSDAT *fout;
PVSDAT *fin; /* input fsig */
/* other opcode args */
MYFLT *coef, *itype;
MYFLT mode; /* filter type */
unsigned long lastframe;
} pvsnewfilter;

int pvsnewfilter_init(CSOUND *csound,

pvsnewfilter *p)
{
long N = p->fin->N;
p->mode = (int) *p->itype;
/* this allocates an AUXCH struct, if
 non-existing */
if(p->fout->frame.auxp==NULL)
 csound->AuxAlloc((N+2)*sizeof(float),
 &p->fout->frame);
/* output fsig description */
p->fout->N = N;
p->fout->overlap = p->fin->overlap;
p->fout->winsize = p->fin->winsize;
p->fout->wintype = p->fin->wintype;
p->fout->format = p->fin->format;
p->fout->framecount = 1;
p->lastframe = 0;

/* check format */
if (!(p->fout->format==PVS_AMP_FREQ ||
 p->fout>format==PVS_AMP_PHASE))
return csound->InitError(csound, "wrong
format\n");
/* initerror is a utility csound
 function */

return OK;
}

The opcode dataspace contains pointers to the
output and input fsig, as well as the k-rate
coefficient and the internal variable that holds the

filter mode. The init function has to allocate space
for the output fsig DFT frame, using the csound
opcode API function AuxAlloc(), checking first if
it is not there already.

int pvsnewfilter_process(CSOUND *csound,
 pvsnewfilter p)
{
 long i,N = p->fout->N;
 MYFLT cosw, tpon;
 MYFLT coef = *p->kcoef;
 float *fin = (float *)
 p->fin >frame.auxp;
float *fout = (float *)
 p->fout->frame.auxp;

if(fout==NULL)
 return csound->PerfError(csound, "not
initialised\n");
/* perferror is a utility csound
 function */

if(mode) coef = -coef;
/* if a new input frame is ready */
if(p->lastframe <
 p->fin->framecount) {
 /* process the input, filtering */
 pon = pi/N; /* pi is global*/
 for(i=0;i < N+2;i+=2) {
 cosw = cos(i*pon);
 /* amps */
 fout[i] = fin[i] *

sqrt(1+coef*coef+2*coef*cosw);
 /* freqs: unchanged */
 fout[i+1] = fin[i+1];
 }
 /* update the framecount */
 p->fout->framecount =
 p->lastframe = p->fin->framecount;
 }
return OK;
}

The processing function keeps track of the frame
count and only processes the input, generating a
new output frame, if a new input is available. The
framecount is generated by the analysis opcode
and is passed from one processing opcode to the
next in the chain. As mentioned before, the
processing function is called every control-period,
but it is independent of it, only performing when
needed. The only caveat is that the fsig framework
requires the control period in samples (ksmps) to
be smaller or equal to the analysis hopsize.
Finally, the localops OENTRY structure for this
opcode will look like this:

static OENTRY localops[] = {
 {"pvsnewfilter", S(pvsnewfilter), 3,
 "f", "fkp", (SUBR)pvsnewfilter_init,
 (SUBR)pvsnewfilter_process}
};

From the above, it is clear to see that the new
opcode is called pvsnewfilter and its

implementation is made of i-time and k-rate
functions. It takes fsig, ksig and one optional i-time
arguments and it outputs fsig data.

5 Conclusion

Csound is regarded as one of the most complete
synthesis and processing languages in terms of its
unit generator collection. The introduction of
UDOs, plugin opcode and function table
mechanisms, as well as a self-describing spectral
signal framework, has opened the way for further
expansion of the language. These methods provide
simpler and quicker ways for customisation. In
fact, one of the goals of csound 5 is to enhance the
possibilities of extension and integration of the
language/processing engine into other systems. It
is therefore expected that the developments
discussed in this article are but only the start of a
new phase in the evolution of csound.

6 References

Richard Dobson. 2000. PVOCEX: File format for

Phase Vocoder data, based on WAVE FORMAT
EXTENSIBLE. .
http://www.bath.ac.uk/~masrwd/pvocex/pvocex.
html.

Rasmus Ekman. 2000. Csound Control Flow.
http://www.csounds.com/internals/index.html.

John Ffitch. Extending Csound. In R. Boulanger,
editor, The Csound Book, Cambridge, Mass.,
MIT Press.

Michael Goggins et Al. 2004. The Csound API.
http://www.csounds.com/developers/html/csoun
d_8h.html

F Richard Moore. 1990. Elements of Computer
Music, Englewood Cliffs, NJ: Prentice-Hall,
1990.

Stephen T Pope. 1993. Machine Tongues XV:
Three Packages for Software Sound Synthesis.
Computer Music Journal 17 (2).

Mark Resibois. 2000. Adding New Unit
Generators to Csound. In R. Boulanger, editor,
The Csound Book, Cambridge, Mass., MIT
Press.

Barry Vercoe. 2004. The Csound and VSTCsound
Reference Manual,
http://cvs.sourceforge.net/viewcvs.py/csound/cso
und5/csound.pdf.

http://www.bath.ac.uk/~masrwd/pvocex/pvocex.html
http://www.bath.ac.uk/~masrwd/pvocex/pvocex.html
http://www.csounds.com/internals/index.html
http://www.csounds.com/developers/html/csound_8h.html
http://www.csounds.com/developers/html/csound_8h.html
http://cvs.sourceforge.net/viewcvs.py/csound/csound5/csound.pdf
http://cvs.sourceforge.net/viewcvs.py/csound/csound5/csound.pdf

	Extensions to the Csound Language: from User-Defined to Plug
	Abstract
	Introduction
	Csound versions
	Extending the language
	Data types and signals
	User-defined opcodes
	Adding external components

	Spectral signals
	Conclusion
	References

