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Abstract 

This article describes the latest methods of 
extending the csound language. It discusses these 
methods in relation to the two currently available 
versions of the system, 4.23 and 5. After an 
introduction on basic aspects of the system, it 
explores the methods of extending it using 
facilities provided by the csound language itself, 
using  user-defined opcodes. The mechanism of 
plugin opcodes and function table generation is 
then introduced as an external means of extending 
csound. Complementing this article, the fsig signal 
framework is discussed, focusing on its support for 
the development of spectral-processing opcodes. 
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1 Introduction 

The csound (Vercoe 2004) music programming 
language is probably the most popular of the text-
based audio processing systems. Together with 
cmusic (Moore 1990), it was one of the first 
modern C-language-based portable sound 
compilers (Pope 1993), but unlike it, it was 
adopted by composers and developers world-wide 
and it continued to develop into a formidable tool 
for sound synthesis, processing and computer 
music composition. This was probably due to the 
work of John Ffitch and others, who coordinated a 
large developer community who was ultimately 
responsible for the constant upgrading of the 
system. In addition, the work of composers and 
educators, such as Richard Boulanger, Dave 
Phillips and many others, supported the expansion 
of its user base, who also has been instrumental in 
pushing for new additions and improvements. In 
summary, csound can be seen as one of the best 
examples of music open-source software 
development, whose adoption has transcended a 

pool of expert-users, filtering into a wider music 
community.   
 
The constant development of csound has been 
partly fuelled by the existence of a simple opcode 
API (fftich 2000) (Resibois 2000), which is easy to 
understand, providing a good, if basic, support for 
unit generator addition. This was, for many years, 
the only direct means of extending csound for 
those who were not prepared to learn the inside 
details of the code. In addition, the only way of 
adding new unit generators to csound was to 
include them in the system source code and re-
build the system, as there was no support for 
dynamically-loadable components (csound being 
from an age where these concepts had not entered 
mainstream software development). Since then, 
there were some important new developments in 
the language and the software in general providing 
extra support for extensions. These include the 
possibility of language extension both in terms of 
C/C++-language loadable modules and in csound’s 
own programming language. Another important 
development has been the availability of a more 
complete C API (Goggins et al 2004), which can 
be used to instantiate and control csound from a 
calling process, opening the door for the separation 
of language and processing engine.  

2 Csound versions 

Currently there are two parallel versions of the so-
called canonical csound distribution, csound 4.23, 
which is a code-freeze version from 2002 , and 
csound 5, a re-modelled system, still in beta stage 
of development. The developments mentioned in 
the introduction are present in csound 4.23, but 
have been further expanded in version 5. In this 
system, apart from the core opcodes, most of the 
unit generators are now in loadable library 
modules and further opcode addition should be in 
that format. The plugin opcode mechanism is 
already present in version 4.23, although some 
differences exist between opcode formats for the 
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two versions. These are mainly to do with 
arguments to functions and return types. There is 
also now a mechanism for dynamic-library 
function tables and an improved/expanded csound 
API. Other changes brought about in csound 5 are 
the move to the use of external libraries for 
soundfile, audio IO and MIDI.  
 
Csound 4.23 is the stable version of csound, so at 
this moment, it would be the recommended one for 
general use and, especially, for new users. Most of 
the mechanisms of language extension and unit 
generator development discussed in this paper are 
supported by this version. For Linux users, a GNU 
building system-based source package is available 
for this version, making it simple to configure and 
install the program on most distributions. It is 
important to also note that csound 5 is fully 
operational, although with a number of issues still 
to be resolved. It indeed can be used by anyone,  
nevertheless we would recommend it for more 
experienced users. However, the user input is 
crucial to csound 5 development, so the more users 
adopting the new  version, the better for its future.  

3 Extending the language 

As mentioned earlier, csound has mechanisms for 
addition of new components  both by writing code 
in the csound language itself and by writing C/C++ 
language modules. This section will concentrate on 
csound language-based development, which takes 
the basic form of user-defined opcodes. Before 
examining these, a quick discussion of csound data 
types, signals and performance characteristics is 
offered 

3.1 Data types and signals 

The csound language provides three basic data 
types: i-, k- and a-types. The first is used for 
initialisation variables, which will assume only one 
value in performance, so once set, they will usually 
remain constant throughout the instrument code. 
The other types are used to hold scalar (k-type) and 
vectorial (a-type) variables. The first will hold a 
single value, whereas the second will hold an array 
of values (a vector) and internally, each value is a 
floating-point number, either 32- or 64-bit, 
depending on the version used. 
 
A csound instrument code can use any of these 
variables, but opcodes might accept specific types 
as input and will generate data in one of those 
types. This implies that opcodes will execute at a 
certain update rate, depending on the output type 
(Ekman 2000). This can be at the audio sampling 
rate (sr), the control rate (kr) or only at 
initialisation time. Another important aspect is that 

csound instrument code effectively has a hidden 
processing loop, running at the control-rate and 
affecting (updating) only control and audio signals. 
An instrument will execute its code lines in that 
loop until it is switched off 
Under this loop, audio variables, holding a block of 
samples equivalent to sr/kr (ksmps), will have their 
whole vector updated every pass of the loop: 
 
instr 1    /* start of the loop */ 
 
iscl = 0.5 /* i-type, not affected by  

       the loop */ 
asig  in  /* copies ksmps  samples from  
             input buffer into asig  */  
atten = asig*iscl /* scales every sample  
                   of  asig with iscl */  
out  atten /* copies kmsps samples from 
              atten into output buffer */ 
 
endin     /* end of the loop */ 
 
This means that code that requires sample-by-
sample processing, such as delays that are smaller 
than one control-period, will require setting the a-
rate vector size, ksmps, to 1, making kr=sr. This 
will have a detrimental effect on performance, as 
the efficiency of csound depends a lot on the use of 
different control and audio rates.  

3.2 User-defined opcodes 

The basic method of adding unit generators in the 
csound language is provided by the user-defined 
opcode (UDO) facility, added by Istvan Varga to 
csound 4.22. The definition for a UDO is given 
using the keywords opcode and endop, in a similar 
fashion to instruments: 
 
opcode  NewUgen,a,aki 
/* defines an a-rate opcode, taking a,  
   k and i-type inputs */ 
endop 
 
The number of allowed input argument types is 
close to what is allowed for C-language opcodes. 
All p-field values are copied from the calling 
instrument. In addition to a-,k- and i-type 
arguments (and 0, meaning no inputs), which are 
audio, control and initialisation variables, we have: 
K, control-rate argument (with initialisation); plus 
o, p and j (optional arguments, i-type variables 
defaulting to 0,1 and -1). Output is permitted to be 
to any of a-, k- or i-type variables. Access to input 
and output is simplified through the use of a 
special pair of opcodes, xin and xout. UDOs 
will have one extra argument in addition to those 
defined in the declaration, the internal number of 
the a-signal  vector samples iksmps. This sets 
the value of a local control rate (sr/iksmps) and 



defaults to 0, in which case the iksmps value is 
taken from the caller instrument or opcode. 
 
The possibility of a different a-signal vector size 
(and different control rates) is an important aspect 
of UDOs. This enables users to write code that 
requires the control rate to be the same as audio 
rate, without actually having to alter the global 
values for these parameters, thus improving 
efficiency. An opcode is also provided for setting 
the iksmps value to any given constant: 
 
setksmps 1 /* sets a-signal vector to 1,  
            making kr=sr */ 
  
The only caveat is that when the local ksmps value 
differs from the global setting, UDOs are not 
allowed to use global a-rate operations (global 
variable access, etc.). The example below 
implements a simple feedforward filter, as an 
example of UDO use: 
 
#define LowPass 0  
#define HighPass 1 
 
opcode  NewFilter  a,aki 
      
 setksmps  1     /* kr = sr */ 
 asig,kcoef,itype  xin 
 adel init 0  
   
 if itype == HighPass then 
  kcoef = -kcoef 
 endif 
 
 afil  =  asig + kcoef*adel 
 adel = asig  /* 1-sample delay,  

only because kr = sr */      
     xout   afil 
 
endop 
 
Another very important aspect of  UDOs is that 
recursion is possible and only limited to available 
memory. This allows, for instance, the 
implementation of recursive filterbanks, both serial 
or parallel, and similar operations that involve the 
spawning of  unit generators. The UDO facility has 
added great flexibility to the csound language, 
enabling the fast development of musical signal 
processing operations. In fact, an on-line UDO 
database has been made available by Steven Yin, 
holding many interesting new operations and 
utilities implemented using this facility 
(www.csounds.com/udo). This possibly will form 
the foundation for a complete csound-language-
based opcode library.  

3.3 Adding external components 

Csound can be extended in variety of ways by 
modifying its source code and/or  adding elements 

to it. This is something that might require more 
than a passing acquaintance with its workings, as a 
rebuild of the software from its complete source 
code. However, the addition of unit generators and 
function tables is generally the most common type 
of extension to the system. So, to facilitate this, 
csound offers a simple opcode development API, 
from which new dynamically-loadable (‘plugin’) 
unit generators can be built. In addition, csound 5 
also offers a similar mechanism for function tables. 
Opcodes can be written in the C or C++ language. 
In the latter, the opcode is written as a class 
derived from a template (‘pseudo-virtual’) base 
class OpcodeBase, whereas in the former, we 
normally supply a C module according to a basic 
description. The following sections will describe 
the process of adding an opcode in the C language. 
An alternative C++ class implementation would 
employ  a similar method. 

3.3.1 Plugin opcodes 
C-language opcodes normally obey a few basic 
rules and their development require very little in 
terms of knowledge of the actual processes 
involved in csound. Plugin opcodes will have to 
provide three main programming components: a 
data structure to hold the opcode internal data, an 
initialising function or method, and a processing 
function or method. From an object-oriented 
perspective, all we need is a simple class, with its 
members, constructor and perform methods. Once 
these elements are supplied, all we need to do is to 
add a line telling csound what type of opcode it is, 
whether it is an i-, k- or a-rate based unit generator 
and what arguments it takes.  
 
The data structure will be organised in the 
following fashion: 
 

1. The OPDS data structure, holding the 
common components of all opcodes. 

2. The output pointers (one MYFLT pointer 
for each output) 

3. The input pointers (as above) 
4. Any other internal dataspace member. 

 
The csound opcode API is defined by csdl.h, which 
should be included at the top of the source file. The 
example below shows the data structure for same 
filter implemented  in previous sections: 
 
#include "csdl.h" 
 
typedef struct  _newflt { 
OPDS  h; 
MYFLT *outsig;/* output pointer  */ 
MYFLT *insig,*kcoef,*itype;/* input 
                            pointers */ 
MYFLT  delay;  /* internal variable,  
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                the 1-sample delay */ 
int    mode;   /* filter mode */ 
} newfilter; 
 
The initialisation function is only there to initialise 
any data, such as the 1-sample delay, or allocate 
memory, if needed. The new plugin opcode model 
in csound5 expects both the initialisation function 
and the perform function to return an int value, 
either OK or NOTOK. In addition, both methods 
now take a two arguments:  pointers to the 
CSOUND data structure and the opcode dataspace. 
In version 4.23 the opcode function will only take 
the pointer to the  opcode dataspace as argument. 
The following example shows an initialisation 
function in csound 5 (all following examples are 
also targeted at that version): 
 
int newfilter_init(CSOUND *csound,  

newfilter *p){ 
p->delay = (MYFLT) 0; 
p->mode = (int) *p->itype; 
return OK; 
} 
 
The processing function implementation will 
depend on the type of opcode that is being created. 
For audio rate opcodes, because it will be 
generating audio signal vectors, it will require an 
internal loop to process the vector samples. This is 
not necessary with k-rate opcodes, as we are 
dealing with scalar inputs and outputs, so the 
function has to process only one sample at a time. 
This means that, effectively, all processing 
functions are called every control period. The filter 
opcode is an audio-rate unit generator, so it will 
include the internal loop. 
 
int newfilter_process(CSOUND *csound,  
                       newfilter *p){ 
int i; 
/* signals in, out */ 
MYFLT *in = p->insig; 
MYFLT *out = p->outsig; 
/* control input */ 
MYFLT  coef = *p->kcoef; 
/* 1-sample  delay  */ 
MYFLT delay = *p->delay;   
MYFLT temp; 
int ksmps = csound->GetKsmps(); 
 
if(p->mode)coef = -coef; 
 
/* processing loop    */ 
for(i=0; i < ksmps; i++){ 
    temp = in[i]; 
    out[i] = in[i] + delay*coef ; 
    delay = temp; 
} 
/* keep delayed sample for next time */ 
*p->delay = delay;   
 
return OK; 
} 

 
To complete the source code, we fill an opcode 
registration structure OENTRY array called 
localops (static), followed by the LINKAGE 
macro: 
 
static OENTRY localops[] = { 
{ "newfilter", S(newfilter),  5,  "a",    
"aki",  (SUBR)newfilter_init,  NULL, 
(SUBR)newfilter_process } 
}; 
 
LINKAGE 
 
The OENTRY structure defines the details of the 
new opcode: 
 

1. the opcode name (a string without any 
spaces). 

2. the size of the opcode dataspace, set using 
the macro S(struct_name), in most cases; 
otherwise this is a code indicating that the 
opcode will have more than one 
implementation, depending on the type of 
input arguments. 

3. An int code defining when the opcode is 
active: 1 is for i-time, 2 is for k-rate and 4 
is for a-rate. The actual value is a 
combination of one or more of those. The 
value of 5 means active at i-time (1) and a-
rate (4). This means that the opcode has an 
init function and an a-rate processing 
function. 

4. String definition the output type(s): a, k, s 
(either a or k), i, m (multiple output 
arguments), w or  f  (spectral signals). 

5. Same as above, for input types: a, k, s, i, 
w, f, o (optional i-rate, default to 0), p (opt, 
default to 1), q (opt, 10),  v(opt, 0.5), j(opt, 
–1), h(opt, 127), y (multiple inputs, a-
type), z (multiple inputs, k-type), Z 
(multiple inputs, alternating k- and a-
types), m (multiple inputs, i-type), M 
(multiple inputs, any type) and n (multiple 
inputs, odd number of inputs, i-type). 

6. I-time function (init), cast to (SUBR). 
7. K-rate function. 
8. A-rate function. 

 
The LINKAGE macro defines some functions 
needed for the dynamic loading of the opcode. 
This macro is present in version 5 csdl.h, but not in 
4.23 (in which case the functions need to be added 
manually): 
 
#define LINKAGE long opcode_size(void) \   
{ return sizeof(localops);}   \                      
OENTRY *opcode_init(ENVIRON *xx)   \ 
{ return localops;}           \ 



 
The plugin opcode is build as a dynamic module, 
and similar code can be used both with csound 
versions 4.23 or 5: 
 
gcc -02 -c opsrc.c -o opcode.o 
ld -E --shared opcode.o –o opcode.so 
 
However, due to differences in the interface, the 
binaries are not compatible, so they will need to 
built specificially for one of the two 
versions.Another difference is that csound 5 will 
load automatically all opcodes in the directory set 
with the environment variable OPCODEDIR, 
whereas version 4.23 needs the flag –opcode-
lib=myopcode.so for loading a specific module. 

3.3.2 Plugin function tables 
A new type of dynamic module, which has been 
introduced in csound 5 is the dynamic function 
table generator (GEN). Similarly to opcodes, 
function table GENs were previously only included 
statically with the rest of the source code. It is 
possible now to provide them as dynamic loadable 
modules. This is a very recent feature, introduced 
by John Ffitch at the end of 2004,  so it has not 
been extensively tested. The principle is similar to 
plugin opcodes, but the implementation is simpler. 
It is only necessary to provide the GEN routine 
that the function table implements. The example 
below shows the test function table, written by 
John Ffitch, implementing a hyperbolic tangent 
table: 
 
#include "csdl.h" 
#include <math.h> 
 
void tanhtable(CSOUND *csound,  

FUNC *ftp, FGDATA *ff,) 
{ 
/* the function table */ 
MYFLT fp = ftp->ftable;  
/* f-statement p5, the range */  
MYFLT range = ff->e.p[5];  
/* step is range/tablesize */ 
double step = (double) 
              range/(ff->e.p[3]); 
int i; 
double x; 
  /* table-filling loop   */ 
   for(i=0, x=FL(0.0); i<ff->e.p[3];  

i++,x+=step) 
       *fp++ = (MYFLT)tanh(x); 
} 
 
The GEN function takes three arguments, the 
csound dataspace, a function table pointer and a 
gen info data pointer. The former holds the actual 
table, an array of MYFLTs, whereas the latter 
holds all the information regarding the table, e.g.  
its size and creation arguments. The FGDATA 
member e will hold a numeric array (p) with all 

p-field data passed from the score f-statement (or 
ftgen opcode). 
 
static NGFENS localfgens[] = { 
   { "tanh", (void(*)(void))tanhtable}, 
   { NULL, NULL} 
}; 
 
The structure NFGENS holds details on the 
function table GENs, in the same way as OENTRY 
holds opcode information. It contains a string name 
and a pointer to the GEN function. The localfgens 
array is initialised with these details and terminated 
with NULL data.  Dynamic GENs are numbered  
according to their loading order, starting from 
GEN 44 (there are 43 ‘internal’ GENs in csound 
5). 
  
#define S sizeof 
static OENTRY *localops = NULL; 
FLINKAGE 
 
Since opcodes and function table GENs reside in 
the same directory and are loaded at the same time, 
setting the *localops array to NULL, will avoid 
confusion as to what is being loaded. The 
FLINKAGE macro works in the same fashion as 
LINKAGE.  

4 Spectral signals 

As discussed above, Csound provides data types 
for control and audio, which are all time-domain 
signals. For spectral domain processing, there are 
two separate signal types, ‘wsig’ and ‘fsig’. The 
former is a signal type introduced by Barry Vercoe 
to hold a special, non-standard, type of logarithmic 
frequency analysis data and is used with a few 
opcodes originally provided for manipulating this 
data type. The latter is a self-describing data type 
designed by Richard Dobson to provide a 
framework for spectral processing, in what is 
called streaming phase vocoder processes (to 
differentiate it from the original csound phase 
vocoder opcodes). Opcodes for converting between 
time-domain audio signals and fsigs, as well as a 
few processing opcodes, were provided as part of 
the original framework by Dobson. In addition, 
support for a self-describing, portable, spectral file 
format PVOCEX (Dobson 2002) has been added to 
csound, into the analysis utility program pvanal 
and with a file reader opcode. A library of 
processing opcodes, plus a spectral GEN, has been 
added to csound by this author. This section will 
explore the fsig framework, in relation to opcode 
development. 
 
Fsig is a self-describing csound data type which 
will hold frames of  DFT-based spectral analysis 



data. Each frame will contain the positive side of 
the spectrum, from 0 Hz to the Nyquist (inclusive). 
The framework was designed to support different 
spectral formats, but at the moment, only an 
amplitude-frequency format is supported, which 
will hold pairs of floating-point numbers with the 
amplitude and frequency (in Hz) data for each DFT 
analysis channel (bin). This is probably the most 
musically meaningful of the DFT-based output 
formats and is generated by  Phase Vocoder (PV) 
analysis. The fsig data type is defined by the 
following C structure: 
 
typedef struct pvsdat { 
/* framesize-2, DFT length */ 
long N;  
/* number of frame overlaps */        
long overlap;  
/* window size */   
long winsize;  
/* window type: hamming/hanning */   
int  wintype;  
/* format: cur. fixed to AMP:FREQ */   
long format; 
/* frame counter   */             
unsigned long   framecount; 
/* spectral sample is a 32-bit float */ 
AUXCH frame;       
} PVSDAT; 
 
The structure holds all the necessary data to 
describe the signal type: the DFT size (N), which 
will determine the number of analysis channels 
(N/2 + 1) and the framesize; the number of 
overlaps, or decimation, which will determine 
analysis hopsize (N/overlaps); the size of the 
analysis window, generally the same as N;  the 
window type, currently supporting 
PVS_WIN_HAMMING or PVS_WIN_HANN; 
the data format, currently only  PVS_AMP_FREQ; 
a frame counter, for keeping track of processed 
frames; and finally the AUXCH structure which 
will hold the actual array of floats with the spectral 
data. The AUXCH structure and associated 
functions are provided by csound as a mechanism 
for dynamic memory allocation and are used 
whenever such operation is required. A number of 
other utility functions are provided by the csound 
opcode API, as CSOUND structure members, (in 
csoundCore.h), for operations such as loading, 
reading and writing files, accessing function tables, 
handling string arguments, etc.. Two of these are 
used in the code below to provide simple error 
notification and handling (InitError() and 
PerfError()). 
 
A number of implementation differences exist 
between spectral and time-domain processing 
opcodes. The main one is that new output is only 
produced if a new input frame is ready to be 

processed. Because of this implementation detail, 
the processing function of a streaming PV opcode 
is actually registered as a k-rate routine. In 
addition, opcodes allocate space for their fsig 
frame outputs, unlike ordinary opcodes, which 
simply take floating-point buffers as input and 
output. The fsig dataspace is externally allocated, 
in similar fashion to audio-rate vectors and control-
rate scalars; however the DFT frame allocation is 
done by the opcode generating the signal. With 
that in mind, and observing that type of data we are 
processing is frequency-domain, we can implement 
a spectral unit generator as an ordinary (k-rate) 
opcode. The following example is a frequency-
domain version of the simple filter implemented in 
the previous sections:  
 
#include "csdl.h" 
#include "pstream.h" /* fsig definitions 
*/ 
 
typedef struct _pvsnewfilter { 
OPDS    h; 
/* output fsig, its frame needs to be    
   allocated */ 
PVSDAT  *fout;  
PVSDAT  *fin;   /* input fsig */ 
/* other opcode args  */ 
MYFLT   *coef, *itype;  
MYFLT    mode;  /* filter type */ 
unsigned long lastframe; 
} pvsnewfilter; 
 
int pvsnewfilter_init(CSOUND *csound,  

pvsnewfilter *p) 
{ 
long N = p->fin->N; 
p->mode = (int) *p->itype; 
/* this allocates an AUXCH struct, if 
   non-existing */ 
if(p->fout->frame.auxp==NULL) 
  csound->AuxAlloc((N+2)*sizeof(float), 
            &p->fout->frame); 
/* output fsig description */ 
p->fout->N =  N; 
p->fout->overlap = p->fin->overlap; 
p->fout->winsize = p->fin->winsize; 
p->fout->wintype = p->fin->wintype; 
p->fout->format = p->fin->format; 
p->fout->framecount = 1; 
p->lastframe = 0; 
 
/* check format */      
if (!(p->fout->format==PVS_AMP_FREQ ||  
      p->fout>format==PVS_AMP_PHASE)) 
return  csound->InitError(csound, "wrong 
format\n"); 
/* initerror is a utility csound      
   function */ 
 
return OK; 
} 
  
The opcode dataspace contains pointers to the 
output and input fsig, as well as the k-rate 
coefficient and the internal variable that holds the 



filter mode. The init function has to allocate space 
for the output fsig DFT frame, using the csound 
opcode API function AuxAlloc(), checking first if 
it is not there already. 
 
int pvsnewfilter_process(CSOUND *csound,   
      pvsnewfilter p) 
{ 
 long i,N = p->fout->N; 
 MYFLT cosw, tpon; 
 MYFLT coef = *p->kcoef; 
 float *fin = (float *)  
           p->fin >frame.auxp; 
float *fout = (float *)  
           p->fout->frame.auxp; 
 
if(fout==NULL) 
 return csound->PerfError(csound, "not 
initialised\n"); 
/* perferror is a utility csound  
   function */ 
 
if(mode) coef = -coef; 
/* if a new input frame is ready  */  
if(p->lastframe <  
   p->fin->framecount) { 
 /* process the input, filtering */ 
  pon = pi/N; /* pi is global*/ 
  for(i=0;i < N+2;i+=2) { 
    cosw = cos(i*pon); 
    /* amps */ 
    fout[i] =  fin[i] * 

sqrt(1+coef*coef+2*coef*cosw); 
    /* freqs: unchanged */  
    fout[i+1] = fin[i+1];                   
      } 
  /* update the framecount  */ 
   p->fout->framecount =  
   p->lastframe = p->fin->framecount; 
    } 
return OK; 
} 
 
The processing function keeps track of the frame 
count and only processes the input, generating a 
new output frame, if a new input is available. The 
framecount is generated by the analysis opcode 
and is passed from one processing opcode to the 
next in the chain. As mentioned before, the 
processing function is called every control-period, 
but it is independent of it, only performing when 
needed. The only caveat is that the fsig framework 
requires the control period  in samples (ksmps) to 
be  smaller or equal to the analysis hopsize. 
Finally, the localops OENTRY structure for this 
opcode will look like this: 
 
static OENTRY localops[] = { 
 {"pvsnewfilter", S(pvsnewfilter), 3,  
  "f", "fkp", (SUBR)pvsnewfilter_init,     
  (SUBR)pvsnewfilter_process} 
}; 
 
From the above, it is clear to see that the new 
opcode is called pvsnewfilter and its 

implementation is made of  i-time and k-rate 
functions. It takes fsig, ksig and one optional i-time 
arguments and it outputs fsig data.  

5 Conclusion 

Csound is regarded as one of the most complete 
synthesis and processing languages in terms of its 
unit generator collection. The introduction of 
UDOs, plugin opcode and function table 
mechanisms, as well as a self-describing spectral 
signal framework, has opened the way for further 
expansion of the language. These methods provide  
simpler and quicker ways for customisation. In 
fact, one of the goals of csound 5 is to enhance the 
possibilities of extension and integration of the 
language/processing engine into other systems. It 
is therefore expected that the developments 
discussed in this article are but only the start of a 
new phase in the evolution of csound. 
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