
Developing User-defined and Plugin Opcodes  
 
Csound is possibly one of the most easily extensible of all modern music 
programming languages. The addition of unit generators (opcodes) and function 
tables is generally the most common type of extension to the language. This is 
possible through two basic mechanisms: user-defined opcodes (UDOs), written in the 
Csound language itself and pre-compiled/binary opcodes, written in C or C++.  To 
facilitate the latter case, Csound offers a simple opcode development API, from which 
dynamically-loadable, or ‘plugin’ unit generators can be built. A similar mechanism 
for function tables is also available.  
 
UDOs, as mentioned above, are written using the facilities of the Csound language 
and they are generally put at the top of an orchestra, or sometimes included in it with 
the use of the #include macro. Their main advantage consists in the simplicity of 
coding, which allows users without C or C++ programming skills to implement their 
own processing algorithms. Another advantage for Csound programmers is the 
possibility of recursion, previously inexistent in the language, which allows very 
compact code for certain processes, such as filter and oscillator banks. 
 
For plugin opcodes,  we can use either the C++ or the C languages. C++ opcodes are 
written as classes derived from a template (‘pseudo-virtual’) base class 
OpcodeBase. In the case of  C opcodes, we normally supply a module according to 
a basic description. The sections on plugin opcodes will use the C language. For those 
interested in object-oriented programming, alternative C++ class implementations for 
the examples discussed in this text can be extrapolated from the original C code. 

1 Csound data types and signals 
The Csound language provides four basic data types: i-, k-, a- and f-types  (there is 
also a fifth type, w, which will not be discussed here). These are used to pass the data 
between opcodes, each opcode input or output parameter relating to one of these 
types. The Csound i-type variable is used for initialisation variables, which will 
assume only one value in performance. Once set, they will remain constant 
throughout the instrument or UDO code, unless there is a reinitialisation pass. In a 
plugin opcode, parameters that receive i-type variables are set inside the initialisation 
part of the code, because they will not change during processing. 
 
The other types are used to hold scalar (k-type) , vectorial (a-type)  and spectral-frame 
(f) signal variables. These will change in performance, so parameters assigned to 
these variables are set and modified in the opcode processing function. Scalars will 
hold a single value, whereas vectors hold an array of values (a vector). These values 
are floating-point numbers, either 32- or 64-bit, depending on the executable version 
used, defined in C/C++ as a custom MYFLT type. Spectral frame variables are 
PVSDAT data structures, which contain a 32-bit float array and other data relating to 
frequency-domain signals.  
 
Plugin opcodes will use pointers to input and output parameters to read and write their 
input/output. The Csound engine will take care of allocating the memory used for its 
variables, so the opcodes only need to manipulate the pointers to the addresses of 



these variables. An exception to this occurs with f-type variables, because the spectral 
data array that they contain will have to be allocated by an opcode that generates this 
type of signal. However, the PVSDAT structures themselves, which contain such 
arrays, are allocated by Csound as any other variable.  
 
A Csound instrument code can use any of these variables, but opcodes will have to 
accept specific types as input and will generate data in one of those types. Certain 
opcodes, known as polymorphic opcodes, will be able to cope with more than one 
type for a specific parameter (input or output). This generally implies that more than 
one version of the opcode will have to be implemented, which will be called 
depending on the parameter types used. 

2 Prelude: using the Csound language 
As a prelude to the study of C-language plugin opcodes, we will have a look at UDOs, 
which provide the basic method of adding unit generators in the Csound language. 
The definition for a UDO uses the keywords opcode and endop, in a similar fashion to 
instruments: 
 
opcode  NewUgen  a,aki 
/* defines an a-rate opcode, taking a,  
   k and i-type inputs */ 
endop 
 

The number of allowed input argument types is close to what is allowed for C-
language opcodes. All p-field values are copied from the calling instrument. In 
addition to a-,k- and i-type arguments (and 0, meaning no inputs), which are audio, 
control and initialisation variables, we have: K, control-rate argument (with 
initialisation); plus o, p and j (optional arguments, i-type variables defaulting to 0,1 
and -1). Output is permitted to be to any of a-, k- or i-type variables. Access to input 
and output is simplified through the use of a special pair of opcodes, xin and xout. 
UDOs will have one extra argument in addition to those defined in the declaration, the 
internal number of the a-signal  vector samples iksmps. This sets the value of a 
local control rate (sr/iksmps) and defaults to 0, in which case the iksmps value is 
taken from the caller instrument or opcode. 
 
The possibility of a different a-signal vector size (and different control rates) is an 
important aspect of UDOs. This enables users to write code that requires the control 
rate to be the same as audio rate, without actually having to alter the global values for 
these parameters, thus improving efficiency. An opcode is also provided for setting 
the iksmps value to any given constant: 
 
setksmps 1 /* sets a-signal vector to 1,  
            making kr=sr */ 

  
The only caveat is that when the local ksmps value differs from the global setting, 
UDOs are not allowed to use global a-rate operations (global variable access, etc.). 
The example below implements a simple feedforward filter, as an example of UDO 
use: 
 
#define LowPass 0  
#define HighPass 1 



 
opcode  NewFilter  a,aki 
      
 setksmps  1     /* kr = sr */ 
 asig,kcoef,itype  xin 
 adel init 0  
   
 if itype == HighPass then 
  kcoef = -kcoef 
 endif 
 
 afil  =  asig + kcoef*adel 
 adel = asig  /* 1-sample delay,  

only because kr = sr */      
     xout   afil 
 
endop 

2.1 Recursion 
Another very important aspect of  UDOs is that recursion is possible and only limited 
to available memory. This allows, for instance, the implementation of recursive 
filterbanks, both serial and parallel, and similar operations that involve the spawning 
of  unit generators. The basic way to implement recursion is to use an i-time counter 
which will keep calling the opcode until it has reached the required recursion depth. 
Then we can jump to the processing part of the opcode, which can then feed the input 
of the recursive calls to the opcode.  
 
As an example, consider the case of a channel vocoder design: it employs a number of 
parallel filters to extract the spectral envelope of a sound and then impose it on 
another, an excitation source. Each analysis band is composed of two filters, one for 
analysis and the other for synthesis and the extracted sound level is imposed using a 
balance opcode. The outputs of each band are mixed to form the input and as the 
filters are connected in parallel, the same input feeds all bands. All we need is to 
design one vocoder band and then call the opcode recursively to form as many bands 
as requested. We will use the opcode i-time counter to adjust the band centre 
frequencies and bandwidths. 
 
Here’s the fully commented code: 
 
/* opcode takes two signals, three controls  
   and two i-time arguments, initialised to 1 
   the first i-time argument, the number of 
   bands, is set by the user; the second is 
   a counter used to index the recursion call 
*/ 
opcode Vocoder, a, aakkkpp 
 
as1,as2,kmin,kmax,kq,ibnd,icnt  xin 
 
/* keep calling the opcode recursively  
   until the count is reached (starting from 1) */ 
if (icnt >= ibnd) goto bank 
abnd   Vocoder as1,as2,kmin,kmax,kq,ibnd,icnt+1 
 
/* once all calls are made, jump to processing, 
   which will happen from the higher bands down 



*/ 
bank: 
/* centre frequencies are evenly (constant-Q) spaced */ 
kfreq = kmin*(kmax/kmin)^((icnt-1)/(ibnd-1)) 
kbw = kfreq/kq 
/* 4th order butterworths: analysis */ 
an  butterbp  as2, kfreq, kbw 
an  butterbp  an, kfreq, kbw 
/* 4th order butterworths: synthesis */ 
as  butterbp  as1, kfreq, kbw 
as  butterbp  as, kfreq, kbw 
/* match the synthesis output to the analysis */ 
ao balance as, an 
/* add the band output to the other bands and output it */ 
amix = ao + abnd 
     xout amix 
 
endop 

 
The recursion code has two important sections: the recursive calls at the top, regulated 
by the if ... goto statement and the processing code resulting in the signal  being 
output.  For parallel arrangements such as this one, there is a need to mix the current 
output of each band to the output of the previous recursive call.  Serial connections do 
not need to do this, but they need to insert their output into the next recursive call (see 
the Csound manual for some simple examples for this type of connections). 
 
The UDO facility has added great flexibility to the Csound language, enabling the fast 
development of musical signal processing operations. In fact, an on-line UDO 
database has been made available by Steven Yi, holding many interesting new 
operations and utilities implemented using this facility (www.csounds.com/udo). This 
possibly will form the foundation for a complete Csound-language-based opcode 
library. 

3 Plugin opcodes 
In cases where UDOs are either to cumbersome or complicated to write or efficiency 
of computation is a main factor, plugin opcodes offer a good mechanism for language 
extension. Originally, Csound opcodes could only be added to the system as 
statically-linked code. This required that the user recompiled the whole Csound code 
with the added C module. The introduction of a dynamic-loading mechanism has 
provided a simpler way for opcode addition, which only requires the C code to be 
compiled and built as a shared, dynamic library. These are known in Csound parlance 
as plugin opcodes and the following sections are dedicated to their development 
process. 
3.1 Anatomy of an opcode 
The C code for a Csound opcode has three main programming components: a data 
structure to hold the internal data, an initialising function and a processing function. 
From an object-oriented perspective, an opcode is a simple class, with its attributes, 
constructor and perform methods. The data structure will hold the attributes of the 
class: input/output parameters and internal variables (such as delays, coefficients, 
counters, indices etc.), which make up its dataspace.  
 



The constructor method is the initialising function, which sets some attributes to 
certain values, allocates memory (if necessary) and anything that is need for an 
opcode to be ready for use. This method is called by the Csound engine when an 
instrument with its opcodes is allocated in memory, just before performance, or when 
a reinitialisation is required. 
 
Performance is implemented by the processing function, or perform method, which is 
called when new output is to be generated. This happens at every control period, or 
ksmps samples. This implies that signals are generated at two different rates: the 
control rate, kr, and the audio rate, sr, which is kr x ksmps samples/sec. What is 
actually generated by the opcode, and how its perform method is implemented, will 
depend on its input and output Csound language data types. 

3.2 Opcoding basics 
C-language opcodes normally obey a few basic rules and their development require 
very little in terms of knowledge of the actual processes involved in Csound. Plugin 
opcodes will have to provide the three main programming components outlined 
above: a data structure plus the initialisation and processing functions. Once these 
elements are supplied, all we need to do is to add a line telling Csound what type of 
opcode it is, whether it is an i-, k- or a-rate based unit generator and what arguments it 
takes.  
 
The data structure will be organised in the following fashion: 
 

1. The OPDS data structure, holding the common components of all opcodes. 
2. The output pointers (one MYFLT pointer for each output) 
3. The input pointers (as above) 
4. Any other internal dataspace member. 

 
The Csound opcode API is defined by csdl.h, which should be included at the top of 
the source file. The example below shows a simple data structure for an opcode with 
one output and three inputs, plus a couple of private internal variables: 
 
#include "csdl.h" 
 
typedef struct  _newopc { 
 
OPDS  h; 
MYFLT *out;/* output pointer  */ 
MYFLT *in1,*in2,*in3; /* input pointers */ 
MYFLT  var1;  /* internal variables */ 
MYFLT  var2;   
 
} newopc; 

 
The initialisation function is only there to initialise any data, such as the internal 
variables, or allocate memory, if needed. The plugin opcode model in Csound 5 
expects both the initialisation function and the perform function to return an int value, 
either OK or NOTOK. Both methods  take two arguments:  pointers to the Csound 
environment and the opcode dataspace.. The following example shows an example 
initialisation function. It initialises one of the variables to 0 and the other to the third 
opcode input parameter. 



 
int newopc_init(ENVIRON *csound, newopc *p){ 

p->var1 = (MYFLT) 0; 
p->var2 = *p->in3; 
return OK; 

} 

 
The processing function implementation will depend on the type of opcode that is 
being created. For control rate opcodes, with k- or i-type input parameters, we will be 
generating one output value at a time. The example below shows an example of this 
type of processing function. This simple example just keeps ramping up or down 
depending on the value of the second input. The output is offset by the first input and 
the ramping is reset if it reaches the value of var2 (which is set to the third input 
argument in the constructor above).  
 
int newopc_process_control(ENVIRON *csound, newopc *p){ 
 MYFLT cnt = p->var1 + *(p->in2); 
 if(cnt > p->var2) cnt = (MYFLT) 0; /* check bounds */ 
 *(p->out) = *(p->in1) + cnt; /* generate output */ 
 p->var1 = cnt; /* keep the value of cnt */ 
 return OK; 
} 

 
For audio rate opcodes, because it will be generating audio signal vectors, it will 
require an internal loop to process the vector samples. This is not necessary with k-
rate opcodes, because, as we are dealing with scalar inputs and outputs,  the function 
has to process only one sample at a time. If we were to make an audio version of the 
control opcode above (disregarding its usefulness), we could have the change the code 
slightly. The basic difference is that we have an audio rate output instead of control 
rate. In this case, our output is a whole vector (a MYFLT array) with ksmps samples, 
so we have to write a loop to fill it. It is important to point out that the control rate and 
audio rate processing functions will produce exactly the same result. The difference 
here is that in the audio case, we will produce ksmps samples, instead of just one  
sample. However, all the vector samples will have the same value (which actually 
makes the audio rate function redundant, but we will use it just to illustrate our point). 
 
int newopc_process_audio(ENVIRON *csound, newopc *p){ 
 int i, n = csound->ksmps; 
 MYFLT *aout = p->out;  /* output signal */ 
 MYFLT cnt = p->var1 + *(p->in2); 
 if(cnt > p->var2) cnt = (MYFLT) 0; /* check bounds */ 
  
 /* processing loop    */ 
 for(i=0; i < n; i++) aout[i] = *(p->in1) + cnt; 
  
 p->var1 = cnt; /* keep the value of cnt */ 
 return OK; 
} 

 
In order for the Csound to be aware of the new opcode, we will have to register it. 
This is done by filling an opcode registration structure OENTRY array called localops 
(which is static, meaning that only one such array exists in memory at a time): 
 
static OENTRY localops[] = { 



{ "newopc", sizeof(newopc),  7,  "s",    "kki",  (SUBR) newopc_init,  
(SUBR) newopc_process_control, (SUBR) newopc_process_audio } 
}; 

 
The OENTRY structure defines the details of the new opcode: 
 

1. the opcode name (a string without any spaces). 
2. the size of the opcode dataspace, set using the macro S(struct_name), in most 

cases; otherwise this is a code indicating that the opcode will have more than 
one implementation, depending on the type of input arguments (a polymorphic 
opcode). 

3. An int code defining when the opcode is active: 1 is for i-time, 2 is for k-rate 
and 4 is for a-rate. The actual value is a combination of one or more of those. 
The value of 7 means active at i-time (1), k-rate (2) and a-rate (4). This means 
that the opcode has an init function, plus a k-rate  and an a-rate processing 
functions. 

4. String definition the output type(s): a, k, s (either a or k), i, m (multiple output 
arguments), w or  f  (spectral signals). 

5. Same as above, for input types: a, k, s, i, w, f, o (optional i-rate, default to 0), p 
(opt, default to 1), q (opt, 10),  v(opt, 0.5), j(opt, –1), h(opt, 127), y (multiple 
inputs, a-type), z (multiple inputs, k-type), Z (multiple inputs, alternating k- 
and a-types), m (multiple inputs, i-type), M (multiple inputs, any type) and n 
(multiple inputs, odd number of inputs, i-type). 

6. I-time function (init), cast to (SUBR). 
7. K-rate function. 
8. A-rate function. 

 
Since we have defined our output as ‘s’, the actual processing function called by 
csound will depend on the output type. For instance 
 
k1  newopc  kin1, kin2, i1 

 
will use newopc_process_control(), whereas  
 
a1  newopc  kin1, kin2, i1 

 
will use newopc_process_audio(). This type of code is found for instance in the 
oscillator opcodes, which can generate control or audio rate (but in that case, they 
actually produce a different output for each type of signal, unlike our example). 
 
Finally, it is necessary to add, at the end of the opcode C code the LINKAGE macro, 
which defines some functions needed for the dynamic loading of the opcode.  
3.3 Building opcodes 
The plugin opcode is build as a dynamic module. On Windows, with certain compiler 
packages  (MSVC for instance), it is necessary to add a definition file for the 
dynamic-link library (DLL). This file will contain the exported symbols, the functions 
that  are used by the Csound engine for loading the opcode: 
 
EXPORTS 
     opcode_init @1 
     opcode_size @2 



 
In Linux and OSX, this is not necessary. All we need is to build the opcode as a 
shared object, as demonstrated by the example below (assuming that we are in the 
top-level csound5 directory and all the relevant csound header files are in the standard  
or current directories, otherwise, use –I [path to header files]): 
 
gcc –02 -c opsrc.c –I./H -o opcode.o  
ld -E --shared opcode.o –o opcode.so 

3.4 A more useful example 
In order to understand the concepts introduced above, we will look now at a ‘real-life’ 
example, an opcode that will probably be much more useful than the previous one. 
The idea for this opcode is simple, yet original in Csound: we will take an input sound 
and loop it, with a k-rate pitch control. The recording should be somehow triggered by 
one of the parameters and we will have to make a decision on how to do it. In 
addition, we will need some memory for the looped sound and a crossfade to tidy up 
the ends of the loop. 
 
In principle, we can use a trigger value of 1 to switch the recording on, which will 
then proceed automatically, stopping once the memory is full. From then on, the 
opcode will playback the loop. The trigger parameter can be used to re-trigger the 
recording. For this to happen, we will have to switch off the loop playback  and 
switch on recording again. The same parameter can control the two things, when it is 
0, it only copies the input to the output, when it is 1 it starts recording and then 
playback. If it becomes 0 again, it goes back to copying the input to the output, until it 
is 1 and it starts a new recording. In order to indicate if we are recording or playing g 
back, we can output a ‘rec on light’: a control-rate output that is 1 when recording is 
in process and 0 otherwise. 
 
The dataspace will have to include the two outputs, the five inputs (signal, pitch, 
trigger, duration and crossfade duration), a buffer, indices for writing/reading the 
buffer and a reset control (to switch the recording on again and control the output 
mode): 
 
#include "csdl.h" 
 
typedef struct _sndloop { 
  OPDS h; 
  MYFLT *out, *recon;  /* output, record on */  
  /* input, pitch, sound on, duration, crossfade  */ 
  MYFLT *sig, *pitch, *on, *dur, *cfd;  
  AUXCH buffer; /* loop memory */ 
  long  wp;     /* writer pointer */ 
  MYFLT rp;     /* read pointer  */ 
  MYFLT a;       /* fade amp */ 
  MYFLT inc;     /* fade inc/dec */ 
  long  cfds;   /* crossfade in samples */ 
  long durs;    /* duration in samples */ 
  int  rst;     /* reset indicator */ 
} sndloop; 
 

In the initialisation function, we convert the durations from seconds to samples, reset 
the writer pointer and reset variable. We also allocate enough memory to hold the 
loop. This is done by using the opcode API function AuxAlloc(ENVIRON *, int 



size, AUXCH *memory), which resides in the ENVIRON structure itself. This 
structure holds the relevant opcode API functions and other global environment 
symbols. The AuxAlloc() mechanism allocates memory only if it is needed, so we 
check if it we need to do it first. This is because instruments can re-use already 
allocated memory, saving the overhead of doing it again. 
 
int sndloop_init(ENVIRON *csound, sndloop *p){ 
 
p->durs = (long) (*(p->dur)*csound->esr); /* dur in samps */ 
p->cfds = (long) (*(p->cfd)*csound->esr); /* fade in samps */ 
 
if(p->durs < p->cfds) 
   return csound->InitError(csound,  
         “Crossfade time longer than loop duration”); 
 
p->inc =  (MYFLT)1/p->cfds;          /* inc/dec */   
p->a  = (MYFLT) 0; 
p->wp = 0;   /* intialise write pointer */  
p->rst = 1;               /* reset the rec control */ 
if(p->buffer.auxp==NULL)   /* allocate memory if necessary */ 

csound->AuxAlloc(csound,  
                 p->durs*sizeof(MYFLT), &p->buffer); 

 
return OK; 
} 
 

The processing algorithm is based on the management of the different output modes 
of the opcode. There are three of them: bypass, recording and playback. In bypass 
mode, we simply copy the input to the output.  The recording stage can actually be 
subdivided into three further blocks: fade in, middle of the loop and fade out. To do 
the crossfade we simply overlap the fade in and fade out portions, mixing the two 
together. The fade in/out is linear, so the envelope gain is increased/decreased by a 
constant amount every sample. In playback mode, we just output the buffer signal 
continuously, wrapping around at the ends. Pitch change is performed by 
incrementing the reader pointer by values larger or smaller than 1 (negative values 
provide reverse playback). This opcode implements a truncated buffer readout; for 
better signal-to-noise ratio an interpolated readout can be used. The processing 
function is shown below, fully commented: 
 
int sndloop_process(ENVIRON *csound, sndloop *p){ 
 
int i, on = (int) *(p->on), recon, n = csound->ksmps; 
long durs = p->durs, cfds = p->cfds, wp = p->wp; 
MYFLT rp = p->rp, a = p->a, inc = p->inc; 
MYFLT *out = p->out, *sig = p->sig, *buffer = p->buffer.auxp; 
MYFLT pitch = *(p->pitch); 
if(on) recon = p->rst; /* restart recording if switched on again */ 
else recon = 0;        /* else do not record */ 
 
 for(i=0; i < n; i++){   
      if(recon){ /* if the recording is ON */ 
 /* fade in portion */ 
 if(wp < cfds){ 
  buffer[wp] = sig[i]*a; 
  a += inc; 
 } 
 else {  



  if(wp >= durs){ /* fade out portion */  
  buffer[wp-durs] += sig[i]*a; 
  a -= inc; 
 } 
 else buffer[wp] = sig[i];  /* middle of loop */ 
 } 
 /* while recording connect input to output directly */ 
 out[i] = sig[i]; 
 wp++; /* increment writer pointer */ 
 if(wp == durs+cfds){  /* end of recording */  
  recon = 0;  /* OFF */ 
  p->rst = 0; /* reset to 0 */ 
  p->rp = (MYFLT) wp; /* rp pointer to start from here */ 
   } 
 } 
 else {   
 if(on){ /* if opcode is ON */  
   out[i] = buffer[(int)rp]; /* output the looped sound */ 
   rp += pitch;              /* read pointer increment */ 
   while(rp >= durs) rp -= durs; /* wrap-around */ 
   while(rp < 0) rp += durs; 
  } 
 else {   /* if opocde is OFF */ 
   out[i] = sig[i]; /* copy input to the output */ 
   p->rst = 1;   /* reset: ready for new recording */ 
   wp = 0; /* zero write pointer */ 
  } 
  }  
 } 
    p->rp = rp; /* keep the values */ 
    p->wp = wp; 
    p->a = a; 
    *(p->recon) = (MYFLT) recon; /* output 'rec on light' */ 
     
    return OK;  
} 
 

Note that we are copying the heavily-used dataspace variables into local ones, which 
are generally faster to access, in order to be more efficient. We try to avoid all 
unnecessary operations and try to reduce the code to a minimum set of them. We 
could perhaps have used only one pointer, for reading and writing, but for the sake of 
clarity, we are employing separate ones. 
 
To register the opcode, we will provide the OENTRY values as shown below. Note 
that our opcode has two outputs, one at the audio rate and another at the control rate. 
We only have an initialisation and audio processing functions, so the third value is set 
to 1+4 (5): 
 
static OENTRY localops[] = { 
{"sndloop", sizeof(sndloop), 5, "ak", "akkii", (SUBR)sndloop_init,  
  0,(SUBR)sndloop_process} 
}; 
 
LINKAGE 



4 Plugin function tables 
A new type of dynamic module, introduced in Csound 5, is the plugin function table 
generator (GEN). Similarly to opcodes, function table GENs were previously only 
included statically with the rest of the source code. It is possible now to provide them 
as dynamic loadable modules. The principle is similar to plugin opcodes, but the 
implementation is simpler. It is only necessary to provide the GEN routine that the 
function table implements. The example below shows the test function table, written 
by John ffitch, implementing a hyperbolic tangent table: 
 
#include "csdl.h" 
#include <math.h> 
 
void tanhtable(ENVIRON *csound, FUNC *ftp, FGDATA *ff,) 
{ 
/* the function table */ 
MYFLT fp = ftp->ftable;  
/* f-statement p5, the range */  
MYFLT range = ff->e.p[5];  
/* step is range/tablesize */ 
double step = (double) 
              range/(ff->e.p[3]); 
int i; 
double x; 
  /* table-filling loop   */ 
   for(i=0, x=FL(0.0); i<ff->e.p[3];  

i++,x+=step) 
       *fp++ = (MYFLT)tanh(x); 
} 
 

The GEN function takes three arguments, the Csound environment dataspace, a 
function table pointer and a GEN info data pointer. The former holds the actual table, 
an array of MYFLTs, whereas the latter holds all the information regarding the table, 
e.g.  its size and creation arguments. The FGDATA member e will hold a numeric 
array (p) with all p-field data passed from the score f-statement (or ftgen opcode). 
 
static NGFENS localfgens[] = { 
   { "tanh", (void(*)(void))tanhtable}, 
   { NULL, NULL} 
}; 

 
The structure NFGENS holds details on the function table GENs, in the same way as 
OENTRY holds opcode information. It contains a string name and a pointer to the 
GEN function. The localfgens array is initialised with these details and terminated 
with NULL data.  Dynamic GENs are numbered  according to their loading order, 
starting from GEN 44 (there are 43 ‘internal’ GENs in Csound 5). 
  
#define S sizeof 
static OENTRY *localops = NULL; 
FLINKAGE 

 
Since opcodes and function table GENs reside in the same directory and are loaded at 
the same time, setting the *localops array to NULL, will avoid confusion as to what is 
being loaded. The FLINKAGE macro works in the same fashion as LINKAGE.  



4.1 Using function tables 
Function tables have a number of different applications, they can hold audio signals, 
envelopes, impulse responses, polynomials, etc.. Opcodes using function tables will 
be able to access these by using the ENVIRON functions FtFind() and 
Ftnp2Find(), among others. The first one is used for the usual tables found in 
Csound, which are power-of-two (plus 1) size, so it guarantees that tables will 
conform to that format. The other function finds tables of any size, which are useful 
for reading deferred-allocation tables created by GEN01. These are sized to match the 
length of the audio data read from a soundfile. 
 
In order to explore the use of function tables, we will develop here a variation of the 
sndloop opcode, which will use loop a sound read from a table, with user-defined loop 
start/end times and crossfade (flooper, a “crossfade looper”). This opcode will also 
use linear interpolation for table lookup, in order to produce a better quality output. 
We will use Ftnp2Find() so that we can also avail of deferred allocation tables. 
Since our table lookup algorithm will use floating-point arithmetic, there is no need to 
limit table sizes to  powers-of-two. 
 
Our approach is going to be slightly different from the ‘live-input’ looper. Since we 
have, at initialisation time, the loop parameters (which will not change) plus the input 
audio (from the function table), we can construct the loop once and just play it back 
later. This will simplify things and will provide a cleaner code. In terms of opcode 
parameters, all we need is: amplitude, pitch, start, duration, crossfade and function 
table number. Our dataspace will look like this: 
 
typedef struct _flooper { 
 OPDS h;  
 MYFLT *out;  /* output, record on */ 
 
     /* amplitude, pitch, start, dur, crossfade, ftable */ 
 MYFLT *amp, *pitch, *start, *dur, *cfd, *ifn;  
 AUXCH buffer; /* loop memory */ 
 FUNC  *sfunc;  /* function tabble */ 
 long strts;   /* start in samples */ 
 long  durs;    /* duration in samples */ 
 MYFLT  ndx;    /* table lookup ndx */ 
} flooper; 

 
As we outlined above, most of the work will be done in the initialisation function. We 
will take the loop parameters and first check if they are consistent. Then we will get 
the function table with Ftnp2Find() , test if the table is long enough for the required 
loop, allocate the loop memory and write the loop to it. We will use basically the 
same code used in sndloop for this task. The loop will start at a user-defined point and 
end after the specified duration, with the crossfade folding the audio samples found 
after the loop end back over the beginning (fig. 1). 
 



 
Figure 1. Loop structure 

 
int flooper_init(ENVIRON *csound, flooper *p){ 
  
MYFLT *tab, *buffer, a = (MYFLT) 0, inc; 
long cfds = (long) (*(p->cfd)*csound->esr);     /* fade in samps  */ 
long starts = (long) (*(p->start)*csound->esr); /* start in samps */ 
long durs = (long)  (*(p->dur)*csound->esr);    /* dur in samps   */ 
long len, i;                
  
if(cfds > durs) 
  return csound->InitError(csound,  
        "crossfade longer than loop duration\n"); 
 
  
inc =  (MYFLT)1/cfds;          /* inc/dec */  
p->sfunc = csound->FTnp2Find(csound, p->ifn);  /* function table */ 
f(p->sfunc==NULL)  
    return csound->InitError(csound,"function table not found\n"); 
 
tab = p->sfunc->ftable,        /* func table pointer */ 
len = p->sfunc->flen;          /* function table length */ 
if(starts > len)  
    return csound->InitError(csound, 
         "start time beyond end of table\n"); 
  
if(starts+durs+cfds > len)  
    return csound->InitError(csound, 
          "table not long enough for loop\n"); 
 
if(p->buffer.auxp==NULL)   /* allocate memory if necessary */ 
 csound->AuxAlloc(csound,(durs+1)*sizeof(MYFLT), &p->buffer); 
  
inc = (MYFLT)1/cfds;       /* fade envelope incr/decr */ 
buffer = p->buffer.auxp;   /* loop memory */ 
 
/* we now write the loop into memory */ 
for(i=0; i < durs; i++){ 
 if(i < cfds){ 
  buffer[i] = a*tab[i+starts]; 
  a += inc; 
  } 
 else buffer[i] = tab[i+starts];; 
} 
/*  crossfade section */ 
for(i=0; i  < cfds; i++){ 



 buffer[i] += a*tab[i+starts+durs]; 
 a -= inc; 
} 
 
buffer[durs] = buffer[0]; /* for wrap-around interpolation */ 
p->strts = starts; 
p->durs = durs; 
p->ndx = (MYFLT) 0;  /* lookup index */ 
return OK; 
} 

 
Since we are going to read the buffer using linear interpolation, we will actually need 
to allocate one extra location at the end of it. The reason behind this is that the 
interpolation procedure will use two samples, at the current lookup position and the 
next. The last sample in the buffer will be a copy of the first, so that the interpolation 
can be performed smoothly. 
 
The processing function is quite simple. It is based on a table-lookup oscillator 
design, except that when we start looping, the oscillator will switch from reading the 
function table to the loop memory. The index is incremented according to the k-rate 
pitch control and is kept within the bounds of the loop memory.  Linear interpolation 
is implemented as follows:  if an index position p falls between table/buffer points x1 
and x2, whose values are y1 and y2, then, by linear interpolation we have 
 

y  =  y1 + (y2 – y1)(p – x1) 
 
All we need to do is to find the fractional part of the index (p – x 1) , multiply it by the 
difference between the two adjacent values and add it to the current position value. 
 
int flooper_process(ENVIRON *csound, flooper *p){ 
  
int i, n = csound->ksmps; 
long start = p->strts+p->durs, end = p->durs+start;  
MYFLT *out = p->out, *buffer = p->buffer.auxp; 
MYFLT amp = *(p->amp), pitch = *(p->pitch); 
MYFLT *tab = p->sfunc->ftable, ndx = p->ndx, frac; 
int tndx; 
  
for(i=0; i < n; i++){ 
 tndx = (int) ndx; 
 frac = ndx - tndx; 
 if(ndx < start) { /* this is the start portion of the sound */ 
   out[i] = amp*(tab[tndx] + frac*(tab[tndx+1] - tab[tndx]));   
   ndx += pitch; 
 }  
 else { /* this is the loop section */ 
   tndx -= start; 
  out[i] = amp*(buffer[tndx] + frac*(tab[tndx+1] - tab[tndx])); 
  ndx += pitch; 
  while (ndx >= end) ndx -= end; 
  while (ndx < start) ndx += start; 
  }   
 } 
p->ndx = ndx;  
return OK; 
} 
 



The opcode OENTRY table entry is shown below: 
 
static OENTRY localops[] = { 
 {"flooper", sizeof(flooper), 5,  
 "a", "kkiiii", (SUBR)flooper_init, 0 ,    
 (SUBR)flooper_process} 
}; 

5 Processing spectral signals 
As discussed above, Csound provides data types for control and audio, which are all 
time-domain signals. For spectral domain processing, there are actually two separate 
signal types, ‘wsig’ and ‘fsig’. The former is a signal type introduced by Barry Vercoe 
to hold a special, non-standard, type of logarithmic frequency analysis data and is 
used with a few opcodes originally provided for manipulating this data type. The 
latter is a self-describing data type designed by Richard Dobson to provide a 
framework for spectral processing, in what is called streaming phase vocoder 
processes (to differentiate it from the original Csound phase vocoder opcodes). 
Opcodes for converting between time-domain audio signals and fsigs, as well as a few 
processing opcodes, were provided as part of the original framework by Dobson. In 
addition, support for a self-describing, portable, spectral file format PVOCEX has 
been added to Csound, into the analysis utility program pvanal and with a file reader 
opcode. A library of processing opcodes, plus a spectral GEN, has been added to 
Csound by this author. This section will explore the fsig framework, in relation to 
opcode development. 
 
Fsig is a self-describing Csound data type which will hold frames of DFT-based 
spectral analysis data. Each frame will contain the positive side of the spectrum, from 
0 Hz to the Nyquist (inclusive). The framework was designed to support different 
spectral formats, but at the moment, only an amplitude-frequency format is supported, 
which will hold pairs of floating-point numbers with the amplitude and frequency (in 
Hz) data for each DFT analysis bin. This is probably the most musically meaningful 
of the DFT-based output formats and can be generated by  phase vocoder (PV) 
analysis (implemented by the opcode pvsanal and the utility analysis program pvanal). 
The fsig data type is defined by the following C structure, which : 
 
typedef struct pvsdat { 
long N; /* framesize-2, DFT length */ 
long overlap; /* number of frame overlaps */ 
long winsize; /* window size */   
int  wintype; /* window type: hamming/hanning */   
long format; /* format: cur. fixed to AMP:FREQ */   
unsigned long   framecount; /* frame counter   */     
AUXCH frame;  /* spectral sample is a 32-bit float */     
} PVSDAT; 

 
The structure holds all the necessary data to describe the signal type: the DFT size 
(N), which will determine the number of analysis bins (N/2 + 1) and the framesize; 
the number of overlaps, or decimation, which will determine analysis hopsize 
(N/overlaps); the size of the analysis window, generally the same as N;  the window 
type, currently supporting PVS_WIN_HAMMING or PVS_WIN_HANN; the data 
format, currently only  PVS_AMP_FREQ; a frame counter, for keeping track of 



processed frames; and finally the AUXCH structure which will hold the actual array 
of floats with the spectral data. 
  
A number of implementation differences exist between spectral and time-domain 
processing opcodes. The main one is that new output is only produced if a new input 
frame is ready to be processed. Because of this implementation detail, the processing 
function of a streaming PV opcode is actually registered as a k-rate routine. In 
addition, opcodes allocate space for their fsig frame outputs, unlike ordinary opcodes, 
which simply take floating-point buffers as input and output. The fsig dataspace is 
allocated externally, in similar fashion to audio-rate vectors and control-rate scalars; 
however the DFT frame allocation is done by the opcode that generates the signal. 
With that in mind, and observing that type of data we are processing is frequency-
domain, we can implement a spectral unit generator as an ordinary (k-rate) opcode.  
 
The code example we will develop here takes advantage of one of the key aspects of 
the PV data format: the separation between amplitudes and frequencies. We will 
implement a spectral highlighter, or spectral arpeggiator. We are borrowing the idea 
from Trevor Wishart’s specarp program from the original Composer’s Desktop  
Project suite of PV data transformation software. The concept (and implementation) is 
very simple, yet effective: we will emphasize one central bin, whilst attenuating all 
others. This will happen for every output frame, depending on three k-rate controls: 
bin index, depth of attenuation and highlight gain. In order to provide a framesize-
independent bin index, we will take it as normalised value, between 0 and 1, scaling it 
to the fftsize. The depth will control how much all bins, except the highlighted one, 
will be attenuated, from 0 (no attenuation) to 1 (full attenuation). The highlight gain is 
simply the positive gain applied to the selected bin. This transformation only concerns 
the amplitudes of each spectral bin,  so we will pass all frequencies unchanged. The 
opcode dataspace and the initialisation function are shown below: 
 
typedef struct _pvsarp { 
        OPDS h; 
        PVSDAT  *fout; 
        PVSDAT  *fin; 
        MYFLT   *cf,*kdepth, *gain; 
        unsigned long   lastframe; 
} pvsarp; 

 
int pvsarp_init(ENVIRON *csound, pvsarp *p) 
{ 
    long N = p->fin->N; /* fftsize */ 
 
    if (p->fout->frame.auxp==NULL) 
        csound->AuxAlloc(csound,(N+2)*sizeof(float),&p->fout->frame);  
    /* initialise the PVSDAT structure */    
    p->fout->N =  N; 
    p->fout->overlap = p->fin->overlap; 
    p->fout->winsize = p->fin->winsize; 
    p->fout->wintype = p->fin->wintype; 
    p->fout->format = p->fin->format; 
    p->fout->framecount = 1;  
    p->lastframe = 0; 
  
    if (!(p->fout->format==PVS_AMP_FREQ) ||  
          (p->fout->format==PVS_AMP_PHASE)) 
           return csound->InitError(csound, 



   "pvsarp: signal format must be amp-phase or amp-freq.\n"); 
    return OK; 
} 

  
The opcode dataspace contains pointers to the output and input fsig, as well as the k-
rate input parameters and a frame counter. The init function has to allocate space for 
the output fsig DFT frame, as well as setting the various PVSDAT parameters. 
 
int pvsarp_process(ENVIRON *csound, pvsarp *p) 
{ 
    long i,j,N = p->fout->N, bins = N/2 + 1; 
    float g = (float) *p->gain; 
    MYFLT kdepth = (MYFLT) *(p->kdepth), cf = (MYFLT) *(p->cf);                   
    float *fin = (float *) p->fin->frame.auxp;           
    float *fout = (float *) p->fout->frame.auxp; 
 
    if(fout==NULL) 
      return csound->PerfError(csound,  
                       "pvsarp: not initialised\n"); 
 
    /* if a new frame is ready for processing */ 
    if(p->lastframe < p->fin->framecount) { 
        /* limit cf and kdepth to 0 – 1 range */ 
        /* scale cf to the number of spectral bins */ 
        cf = cf >= 0 ? (cf < 1 ? cf*bins : bins-1) : 0; 
   kdepth = kdepth >= 0 ? (kdepth <= 1 ? kdepth :  

(MYFLT)1.0): (MYFLT)0.0; 
            /* j counts bins, whereas i counts frame positions */ 
  for(i=j=0;i < N+2;i+=2, j++) {  
              /* if the bin is to be highlighted */ 
    if(j == (int) cf) fout[i] = fin[i]*g; 
              /* else attenuate it */ 
    else fout[i] = (float)(fin[i]*(1-kdepth)); 
              /* pass the frequencies unchanged */ 
    fout[i+1] = fin[i+1]; 
  } 
            /* update the internal frame count */ 
  p->fout->framecount = p->lastframe = p->fin->framecount; 
    } 
    return OK; 
} 

 
The processing function keeps track of the frame count and only processes the input, 
generating a new output frame, if a new input is available. The framecount is 
generated by the analysis opcode and is passed from one processing opcode to the 
next in the chain. As mentioned before, the processing function is called every 
control-period, but it is independent of it, only performing when needed. The only 
caveat is that the fsig framework requires the control period  in samples (ksmps) to be  
smaller or equal to the analysis hopsize. As mentioned above, this process only alters 
the amplitudes of each bin, indexed by i, passing the frequencies (i+1). 
 
Finally, the localops OENTRY structure for this opcode will look like this: 
 
static OENTRY localops[] = { 
  {"pvsarp", sizeof(pvsarp), 3, "f", "fkkk", (SUBR)pvsarp_init,  
  (SUBR)pvsarp_process} 
}; 



 

6 Postlude: documentation 
It is generally assumed that software development stops here, with the finished code, 
when in reality a final and important stage is still to be completed. This is of course 
the writing  of suitable documentation for our work. Without it, any software is of 
limited use, perhaps only for its developers, but even in this case, its usability is not 
guaranteed. Therefore, it is important that a manual page and some examples are 
supplied with every new opcode, be it plugin or UDO. 
 
A Csound manual page template for opcode reference is very well established. The 
manual currently exists in many formats: plain text, help file, html, xml, etc. The 
latter is particularly flexible as it can itself generate documentation in different forms. 
For those interested  in that format, a quick look at some opcode entries will be 
enough for learning the xml tags used in the manual.  
 
In general, the manual page should have the following format: 
 

1. Title: generally the opcode name 
2. Short description: one-line on what it does. 
3. Description: under that heading, a longer discussion of what the opcode does 

and how to use it. 
4. Syntax: the opcode Csound syntax. 
5. Initialisation parameters and their description  
6. Performance parameters and their description, including possibly their 

expected ranges etc. 
7. Csound code examples of opcode usage. 

 
As an example, here is the plain-text manual entry for the pvsarp opcode discussed in 
the previous section: 
 
PVSARP 
 
Spectral filtering and arpeggiation of PV streams. 
 
DESCRIPTION 
Pvsarp takes an input fsig and arpeggiates it according to bin index, 
effect depth and boost amplitude controls. On each fsig input frame, 
it will apply a gain to the target bin, as well as attenuating all 
the other frequency bins according to the depth control. 
 
fsig  pvsarp fin, kcf, kdepth, kgain 
 
[INITIALISATION: this is omitted as the opcode does not have i-type 
parameters] 
 
PERFORMANCE 
fin – input fsig 
kbin –  bin index (normalised, 0-1, equivalent to the 0Hz – Nyquist 
range), determining the target bin for arpeggiation. 
kdepth – depth of attenuation of surrounding bins (0 <= kdepth <= 1) 
kgain – gain (multiplier), applied to the target bin. 
 
EXAMPLE 



This example arpeggiates the spectrum of an input signal, using an 
LFO (with a triangle wave) to control the bin index. The modulation 
width is 0.05*SR/2 (1102.5 at 44.1KHz) and the lowest frequency is 
0.005*SR/2 (110.25). 
 
instr 1 
 
ifftsize = 1024   
iwtype = 1    
ifr = 0.2  
idepth = 1 
 
asig  in 
kbin  oscil  0.05, ifr, 1  
kbin = kbin + 0.005 
 
fsig  pvsanal   asig, ifftsize, ifftsize/4, ifftsize, iwtype 
ftps  pvsarp   fsig, kbin, 0.95, 15 
atps  pvsynth  ftps 
       
       out atps 
endin 
 
f1 0 1024 7 0 512 1 512 0 
i1 0 20 

7 Final remarks 
Opcode and GEN development has become more accessible with the introduction of 
the plugin framework, as well as the UDO facility. Now opcodes can be customised 
by users with a basic understanding of C programming and, for those without it, the 
UDO mechanism can be used a substitute. As a result, opcode additions will not have 
to wait for new releases of Csound, they are now independent and the distribution of 
opcode libraries can be made separately. This is a feature that, allied with the 
straightforward opcode format, makes Csound probably  one of the easiest 
synthesis/processing systems to extend and customise. 
 


